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Abstract 

A revision of the mathematical concept of paracrystals 
is proposed. Hermann's IZ. Electrochem. (1940), 46, 
425-4361 early theory of mesophases represents a 
special case of a paracrystal where the statistical 
parameters introduced were merely crystalline or 
gas-like. The theory of paracrystals removes the 
black-white picture of crystalline and amorphous 
phases by introducing 18 new statistical parameters 
into conventional crystallography. It is shown that a 
real paracrystal can be defined by a three-dimensional 
convolution polynomial in combination with an em- 
pirically derived +t* law. Hence, a missing corner-stone 
of colloid science is established. 

I. Introduction 

The theory of paracrystals was published for the first 
time by Hosemann (1949, 1950). Convolution oper- 
ations, initially introduced by Ewald (1940) to define 
bounded crystals, were applied to describe quanti- 
tatively autocorrelation functions. These functions are 
known for liquids as pair-correlation functions or as 
Debye's a priori distance statistics (Debye, 1927) and 
are always spherically symmetric. In the case of ideal 
crystals autocorrelation functions are known as Patter- 
son functions (Patterson, 1935). All these functions are 
convolution squares Q(x) of a density distribution p(x): 

2 
Q(x) = /3 (x )=  p ( x / ~ - x ) = . ( p ( y )  p(y + x) dy 3. (1) 

This different nomenclature for the same operation is a 
typical feature of the schizoidal character of actual 
structure theories. M. von Laue (1960) pointed out in 
the preface of his famous book R6ntgenstrahl-Inter- 
ferenzen that a new branch of science is in progress 
which closes the gap between crystallography and 
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theories of the liquid state.* On page 65 one finds 
another relevant statement.+ 

During the last 27 years the statements of von Laue 
have been, indeed, confirmed step-wise through a 
systematic experimental and theoretical research in the 
laboratories founded by him in 1952 at the Kaiser- 
Wilhelm-lnstitut ffir Physikalische Chemie in Berlin- 
Dahlem where he was Director. In the present paper we 
wish to show that there really exists a continuous 
transition from the short-range order of liquids up to 
the long-range order characteristic of conventional 
crystals. The gap is covered by the paracrystals. A 
large number of papers have been accumulating 
evidence in favour of them. Here we wish to recapitul- 
ate the essential points of this research work. Finally, 
we will comment on certain criticisms of the theory. 
According to von Laue a new branch of science is 
opening up. 

II. The ideal paracrystal 

The use of one-dimensional convolution polynomials 
has been known since the work of Landau (1937) and 
Ornstein & Zernike (1914). In the present study, 
however, we are concerned with a three-dimensional 
problem. Three vectors a k (k = 1, 2, 3) span the unit 
cell of a paracrystalline lattice. In the special case of a 
primitive orthogonal lattice the three so-called co- 
ordination statistics Hk(x) define the frequencies for 

* 'Seit dem Erscheinen der 2. Auflage (1949)ist  die Forschung 
fiber die Struktur der Kristalle und auch anderer K6rper stfirmisch 
fortgeschritten, es ist sogar, man k6nnte fast sagen, eine neue 
Wissenschaft entstanden fiber die Kristallbaufehler und ihre Folgen. 
Aber die Grundlagen der Theorie der R6ntgeninterferenzen sind 
dadurch nicht berfihrt worden. Immerhin sind in § 10 R. 
Hosemann's Ergebnisse fiber den Bau der Parakristalle wenigstens 
in einfachster Form hinzugekommen.' 

+ +Abet nicht nur bei Flfissigkeiten spielt die Nahordnung die fiir 
die lnterferenzen entscheidende Rolle, es gibt vielmehr einen stetigen 
0bergang von ihr bis hin zur kristallinen Fernordnung. Solche 
Zwischenk6rper bezeichnet man als +Parakristalle'." 

:f 1981 International  Union of  Crys ta l lography  
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values a k = x in the autocorrelation function. Their first 
three moments are defined by 

f Hk(x ) dx 3 = I; f xHk(x) dX3 = ilk; 

(1/&if) f ( x -  i k, ii) 2 Hk(X)dx 3 =  A2i; 

g k i : A k i / a i .  (2) 

Nine new variances g~,i define here the fluctuation 
tensors gki of the statistics Hk(X) and can have special 
orientations defined by nine Euler angles. In the theory 
of ideal paracrystals it is proposed, for convenience, 
that the vectors a i and a k, touching each other within a 
given unit cell, do fluctuate without having any 
statistical correlation. 

The probability for pairs such as a i and a k is given by 
H i ( x ) H k ( x  ). If one wishes to find the probability 
distribution for the vectors a I + a k = y one has to 
integrate over all vectors a t with fixed values y, finding 
as a result: 

H(y) = f Hi(x) Hk(y -- x) dx 3 = H i H k. (3) 

Hi(x) represents the probability for the position of the 
atom (1,0) and Hk(Y ) for the atom (0,1) (Fig. 6). If we 
further use both vectors x and y to define the position 
of the lattice point (1, 1) then evidently there will be no 
correlations between x and y. The opposite sides of this 
lattice cell are, nevertheless, identical. The whole ideal 
paracrystal consists therefore of a network of parallele- 
pipeds (see Fig. 1). The convolution polynomial 

z(x) = 57/-/pqr(X) 
pqr  

with 
p times I 1 --q times--I [---r times--] 1 1 - - - _  

e - 1  ~ ( 5 c  " ~ ~  " - ' ~ " ~ -  npor(X ) = -- O) H i H i . . .  H i H k H k . . .  H k H t H r . . .  H I 

(4) 

represents the autocorrelation function of an un- 
bounded paracrystal. The Fourier transform (symbol 
,~,~-) of z(x) is the paracrystalline lattice factor Z(b). 
This factor can be easily calculated using the con- 
volution theorem of the J transform which states that 

, ~ H  t H k = F l F k if Fi(b) = , f  (Hi); 

Fk(b) = , f ( H  k) (5) 

where the vector b expands in reciprocal space. Thus, 

3 1 + F  k 
Z(b) = . f ( z ) =  l-I Kk; K k =  R e - - .  

k=l 1 - -  F k 
(6) 

Each K k factor has the maxima (1 + IF k [)/(1 -- IF k I)if 

(a k b) = h k (h k integer), (7) 

which are the well known 'Laue conditions'. Contrary 
to the case of crystals, minima with the value 
( 1  - IFkl)/(1 + IFkl) different from zero, also exist if 

(a k b ) = h  k + ½. (8) 

The integral width t~b k of the maxima parallel to the 
direction of a k is given by 

t~bk= ( 1 / 2 g t k ) ( 1 -  IFkl)~_ (1/glk)(rCgkkhk) 2 (9) 

(see Appendix I). In the case of crystals ~Sb k is zero 
because F k is a Fourier transform of the point function 
Hk(X ) and hence IFkl = 1. According to Ewald (1940) 
a bounded paracrystal can be obtained if one multi- 
plies the density distribution function p(x) by a shape 
function s(x) which is equal to unity inside the lattice 
and zero outside it. Then z(x) should be multiplied with 

2 

the convolution square f(x) of s(x), which is, accord- 
ing to (1), defined by s ~ s ( - x ) .  Its Fourier transform 
S2(b) is the shape factor of Ewald. For the intensity 
function I(b) one finally obtains 

I(b) = (i /v) Z I S  2. f ~  (10) 

where v is the volume fit fikfit of a lattice cell, and f2  0 is 
the structure factor. 

Fig. 2 offers an example of a paracrystalline 
two-dimensional structure. Here the small coins are 
packed two-dimensionally in an atttempt to build up a 
cubic primitive lattice. However, 10% of larger coins 
which are distributed over the lattice statistically 
disturb the cubic arrangement. This is the essential 
assumption for the occurrence of a paracrystalline 
lattice: point defects, which produce local microstrains 
overlapping with each other, are irregularly distributed 

• , °  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ° . °  ° ° ~  . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ° .  . . . . . . . . . . . . . . .  
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Fig. 1. A two-dimensional computer-simulated ideal paracrystal. 
The horizontal lines and the vertical netplanes are identical. The 
ideal paracrystal can grow unlimitedly. 
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Fig. 2. Model of a real paracrystal built up by cubic packing of 
small coins disturbed by a small amount of larger ones. Each 
lattice cell has a different shape. The disorder of the lattice is 
larger at the boundaries than in the centres. This was first 
mentioned by Br~imer (1975) and Br~imer & Ruland (1976). The 
real paracrystal has, therefore, always a limiting size depending 
on the degree of distortion. 
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Fig. 3. The autocorrelation function (Q function defined by 
equation 1) of 4 × 4 point atoms arranged in a cubic 
paracrystalline two-dimensional lattice. (a) A single Q function; 
(b) half-widths of an assembly of individual Q functions leading 
to a continuous density distribution defined by the convolution 
polynomial of equation (3). According to a real paracrystal the 
half-widths of the maxima at the boundaries amount only to 20 
to 30% of the nearest-neighbour distances. 

over the lattice. If we assume that the nodes of a lattice 
are built by 4 x 4 coins and construct their convolution 
square defined by (1), we obtain 16 x 16 distance 
vectors, which lie with one end at the origin (0,0) (Fig. 
3). The 16 points at x = 0 represent the distance 
vectors of each point with itself. The 12 points adjacent 
to the left or to the right side define the position of their 
nearest neighbours, the following eight points show the 
distances between the next-nearest neighbours, and so 
on. In practice, the observable convolution square is the 
sum of thousands of individual point statistics. The 
single points are no longer detectable on account of the 
always limited resolving power. Therefore, continuous 
density clouds defined by a bounded autocorrelation 
function appear (see equation 10): 

2 
(1/v)z(x)~(x). (11) 

The half widths of the single function Hpqr(X) are 
plotted in Fig. 3 (b). These widths increase according to 
the laws of statistics with the square root of the 
distance from the centre. The integral widths of the 
reflections are given by the width of the folding product 
of Z(b) with IS(b)lE according to (10). The integral 
width t~b s of IS I  E along a reciprocal cell edge is given 
by (1/ak)(1/Nk), where N k is the number of netplanes 
within the paracrystal. If, for instance, both functions 
Z and ]SI 2 a re  Lorentzian-like, then the total width ~b 
is given by 

~Sb = t~b k + t~b s. (12 )  

By substitution of (9) into (12) we obtain from the 
t~b - -  h E plot the values of N k and gkk: 

~b = (1/a k) [(1/N k) + (rCgkkh) E] 

=(1 /akNk)[1  + (ga* h)2]. (13) 

III. The real paraerystal 

The values of N k and gkk have been derived for different 
paracrystalline samples from the analysis of the t~b-h  E 

plot on a very large number of X-ray diffraction 
patterns• The evaluation of these data leads to the 
empirical relation 

V/Nkgkk=a *, 0.1<~a*<~0.2. (14) 

Fig. 4 illustrates the plot of the experimental values of 
v/-Nk against 1/gkk (Balt~-Calleja & Hosemann, 1980). 
All samples under investigation lie between the above 
mentioned boundaries of a*. Doped metals like the 
ammonia catalyst have the smallest g values of ~ 1% 
(Hosemann, Preisinger & Vogel, 1966; Ludwiczek, 
Preisinger, Fischer, Hosemann, SchSnfeld & Vogel, 
1978). Polymer single crystals from solution have 
somewhat larger g values (HShne & Wilke, 1970). 
Melt-crystallized polyethylene and two-dimensional 
model structures have g values of ~2% and more 
((~a~kovi~, Loboda-(~a~kovi6 & Hosemann, 1973). 
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Melts and pyrolytic graphite with g ~_ 4% and more 
have g values near the gaseous state g > 30% (Steffen, 
1976, Steffen & Hosemann,  1976a,b). 

The physical meaning of (14) is shown in Fig. 5. The 
right part of an autocorrelation function of a two- 
dimensional paracrystal  shows that the fluctuation A x 
of point distances between the first and ( N  + 1)th 
netplane increases proport ional ly with v/N. If A x 
reaches the limiting value a*  d (d = mean netplane 
distance) then the curvature of this boundary netplane 

COmE,lOlL 
T ct* :0.2/,CRYSTALS 7 

1 'Y ZO / w =0.14 

i// 
I .' # o  , 

15]  / /  / / / a  X=O.1 
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Fig. 4. The experimentally observed V ~ '  values of natural micro- 
paracrystals as a function of the reciprocal paracrystalline g 
values (equation 2). 
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0 1 2 3 4 5 6 7 
Fig. 5. The physical meaning of the a* law (equation 14). For 

details see text. 

becomes so large that the valence angles between the 
atoms within this netplane cannot withstand the 
stresses any longer and break their bindings. 

Equation (14) is of fundamental importance for the 
whole field of colloid science and tells us that large inner 
surfaces can be stabilized if they are produced by the 
existence of microparacrystals.  A computer simulated 
experiment illustrates this point (Janke & Hosemann, 
1978). The 'a  priori distance statistics' (Debye, 
1927) of two vectors a 1 (horizontal) and a 2 
(vertical) are given independently from each other 
by a Monte-Carlo method. The angles of their 
directions between the horizontal and vertical lines 
respectively may be of the order of (~*. We start at 
the origin (0,0) (see Fig. 6): The computer selects a 
value a~ and, hence, the position of the atom at (1,0). A 
value a 2 in the vertical direction is subsequently 
generated, reaching the position (1,1). Now the com- 
puter supplies two new values a I and a 2 which by 
means of a circle construction - drawing the vectors a 2 
around the point (0,0) and -a~ around (1,1) - leads to 
the position of (0,1). In a similar manner one passes 
through ( i ,1)  over the ( [ , [ )  and so on. The computer 
draws progressively, in this way, a spiral of lattice 
points around the origin until the distance fluctuations 
between lattice points become so large that the two 
circles cannot intersect with each other anymore. Fig. 7 
shows the paracrystalline lattice drawn by the com- 
puter and the arrow indicates where the paracrystal  
construction is stopped. Fig. 8 illustrates the Fraun- 
hofer diffraction pattern of the model and Fig. 9 shows 
the corresponding 6b-h 2 plot which yields the values 
N - 43 _+ 4 and g = 2.1 + 0.2%. These data  agree 
within the errors of the experiment with the values N = 
45 and g = 2% introduced into the model. This experi- 
ment demonstrates that (9) to (14), derived for the ideal 
paracrystal,  are also applicable for real paracrystals 
having non-parallelepipedic-shaped lattice cells. More- 

l l'" l"' I l 
1 i T °'° i"° i 
' ' ) . )  ' : o  T ', I . T  

i 
Fig. 6. The circle construction of the spiral paracrystal. See text for 

details. 
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over, the -* value of the model is 0-14 in accordance 
with the values obtained for natural microparacrystals 
(see Fig. 4). The reason for the reliability of (10) for 
natural paracrystals stems from the fact that the value 
o f - *  is small in comparison with unity. The con- 
sequence of this is that, similarly to the case of the 
spiral paracrystal, all vectors a i along one line of lattice 
points of a real paracrystal can fluctuate in length and 
are practically independent from those of the adjacent 
lines. The existing correlations influence mostly their 
directions. This is of physical significance, because 
atomic bond angles are much more flexible than bond 
lengths. Even at the boundaries of the lattice the single 
vector lines Y i ai have lengths which differ statistically 
by not more than a* h i. The directions of the a i vectors 
of an ideal three-dimensional paracrystal are, therefore, 
influenced by correlations with adjacent a t lines leading 
to a change of their direction by an angle q) smaller 
than .* .  Let us suppose for convenience that the statis- 
tics H(q)) of these correlation-induced changes of 
direction are constant for I q)l < ~t* and normalized to 
unity. Since 

a- 

( 2zr sin 09 do "~ 2rr-'2/2, 
0 

one obtains 

{1/1r, '2 for Iq)l _< ~* 
H(~p) = 0 t091 >a*" 

If the vector a i under consideration deviates in an ideal 
paracrystal by an angle fli from its mean direction, then 

= cos (fli  + ~o) - cos ~/ is the mean change of the 
length projection of each vector a i in a spiral 
paracrystal. One obtains 

3 = - ] , . z  cos fl - Its* sin/3 (15) 

(see Appendix II). sin fl is much smaller than ~*, hence, 
3 is smaller than 0.01. The correction of the correla- 
tion lies, therefore, within the limits of error and can be 
neglected. 
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Fig. 7. A computer-simulated spiral paracrystal with g~l = g22 = 
0.02. The arrow indicates the break-down of the circle 
construction. 

IV. Objections to the concept of paracrystal 

Several objections which have appeared in the liter- 
ature are caused by certain misunderstandings. Some 
authors have associated the paracrystalline domains in 
polymers with the transition zones between the crystal- 
line and amorphous phases (Kakudo & Kasai, 1972). 
Other objections arise because the a* law is neglected 
(Perret & Ruland, 1971; Br~imer, 1975; Br~imer & 
Ruland, 1976). These authors, for instance, do not take 
into account that in (10) the shape factor I SI E is 
strongly correlated with the lattice factor Z by the a* 
law in (13). 

The conclusion drawn by Perret & Ruland (1971) 
stating that 'it is impossible to bring the theory of 
paracrystals into agreement with the experimental 
results of small-angle scattering' is certainly question- 
able because they neglect the e~* law and use much too 
large values for N g  2 = 0.2 (instead of a .2 ~ 0.02). 
With co r rec t -*  values the ideal paracrystal certainly 
furnishes somewhat larger X-ray small-angle inten- 
sities than pure particle scattering. This is because in 
the ideal paracrystal three families of netplanes, where 

Fig. 8. Laser-Fraunhofer diffraction pattern of Fig. 7 similar to 
that of the ideal paracrystal. 
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Fig. 9. 6b-h  2 plot of the (h,0) reflections of Fig. 8. 
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all netplanes fluctuate as rigid entities, occur (Fig. 1). 
This effect can be eliminated numerically in the analysis 
of small-angle scattering (Weick & Hosemann, 1980). 

The considerations exposed in § III suggest that 
there is no reason whatsoever to take literally the 
model of the ideal paracrystal.  Equations (9) to (12) 
can also be, in fact, applied to wide-angle scattering of 
the real paracrystal where such rigid entities no longer 
exist (See Fig. 9). 

In another case Ruland (1979) argues that 6b-h 2 
plots can also be obtained from polycrystalline 
material, if it is under stress. Until now only a linear 
relationship between 6b and h has been discussed in 
solid-state physics. Vogel (1967) for instance found it 
in cold-deformed pure (t-Fe (see Fig. 10). Since shape 
factor and lattice function have Lorentzian-like pro- 
files, the linear relation (12) can be used and one finds 

6b -- ( l /aN) [1 + N(Aa/a) hi. (16) 

' 14 
<7, 

12 ,. 

,, 10 
tO / 

8 / 

6 

A 

2 114 
011 022 033 044 

I I I t --- 
1 2 3 /, h011 

Fig. 10. Integral widths 6b of the reflection of cold-deformed pure 
(i -Fe. 

Aa is the standard deviation of the lattice constants a of 
single crystallites. NAa/a has, for instance, the value 
1.2 in the example of Fig. 10. 

How can 6b-h 2 diagrams be produced by micro- 
strains? We found two conditions which simul- 
taneously must be realized: 

(1) S 2 and the lattice function are 'Gaussian'-like, 
(2) NAa/a <~ O. 3. 

Instead of (16) one then obtains 

fib= (1~aN){1 + [N(Aa/a)h]Z} m 

~ ( 1 / a N ) { 1  +½[N(Aa/a)h]2}. (17) 

The similarity with (13) is obvious. ½(NAa/ah) 2 is 
replaced by (mr*h) 2 = y. The approximation on the 
second line of (17) works within ? ~ 6% for y ~< 0-5 
(Appendix III). At least three orders of reflections must 
be observable, if crystallites with the quadratic approach 
of (17) can be identified. Therefore NAa/a must be 
smaller than 0.5 or ct* < 0.1. Glocker (1958) discussed 
that iron, contrary to Fig. 10, can have NAa/a values 
down to 0-28 if cold worked and quickly annealed 
above the recovery temperature. Interpreted as para- 
crystalline, such material would not belong to all the 
paracrystals investigated until now, because its (~* value 
and line profiles are of a different type. 

For completeness it may be mentioned that Vogel, 
Haase & Hosemann (1974) have generalized the 
Fourier method of Warren & Averbach (1950). With 
the help of the Fourier transforms A ,10 and A220 of two 
reflections one can differentiate easily between micro- 
stresses and paracrystalline distortions. An example is 
given in Fig. 11. 

In our next paper it will be shown that the analysis of 
melts and polymers carried out with the help of the 
paracrystal theory leads to novel results with regard to 
thermal fluctuations and isothermal compressibility. 

/ / 20 6b 

/ / . 66b 
tn An(l 10) " /~** 

An(220) I / . / / *  ~ * . 15 ./ . /* ** 

/ 
10 

05 

/~19o zgo 390 4o0 x/~ 
70 40 60 80 I00 n 

Fig. 11. Fourier analysis of reflection profiles 110 and 220 of 
melt-crystallized linear polyethylene. - -  Paracrystalline distor- 
tion g~o = 1.6%. The number n6b gives the domain (n/2) 6b <_ 
Ib - h /a l  within which the Fourier transform of the reflection h 
was carried out. - - -  Calculated from Gaussian-type profiles of 
microstrained crystals. 

A P P E N D I X  I 

The three-dimensional function Fk(b) is given in the 
Guinier approximation by 

Fk(b) = I Fk(b)l exp (--2zdbfi k) 

with 

q Fk(b)l ~_ exp (-2zr 2 g2kk h2). (AI.I) 

The Kk(b ) function of (6) consists of a background 
(1 - IFkl)/(1 + IFkl ). The maxima at the position of 
the Laue condition in (7) have, hence, a value 

1 + IFkl 1 --IFkl  41Fkl 
- ( A I . 2 )  

1 - I F k l  1 + IFkl 1 --IFkl  2 

The integral value of a reflection is given by 

( 1 - - ' F k ' )  2'Fk' 
(l/&k) 1 = ( l / h k ) - -  (AI.3) 

1 + IFkl  1 + IFkl 
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The quotient of  (AI.3) and (AI.2) is defined as integral 
width 

~Sb = (½ak)(l -- IFkl) ~_ (1/ak)(zrgkk hk) 2, 

if one introduces the approximat ion in (A 1.1). 

A P P E N D I X  !! 

The relative change of the mean length ) a i of  the ideal 
paracrysta l  is given by the statistical correlation 

~- COS (~i + (/9) -- COS/~i 

-- cos fl (cos ~o - 1) - sin fl sin ~0. (Al l .  1) 

Since Iqgl ~ ¢t* it follows from (14) that 
a* 

COS ~p ---- (2/t, .2) f (1 -- ½q)2) tp d e = 1 - ~rt .2 
0 

ct* 
sin (/9 = (Zfi1.2) J ((/9 - ~(p3) (p do ) 

0 

= ~},~*(1 - ~ort .2) (All .Z) 

and (15) follows. 

A P P E N D I X  !II 

The paraboloid character of  the root in (17) can be 
defined by y and is a quantitative measure  of  reliability 
of  its tentative 6 b - h  2 approximation (see Table 1). 

Table 1. The paraboloid character of the root of 
equation (17) 

y =  I(1 + y ) / ( l  + 2y) ' ' 2 -  I1 × 100. 
y = (n~t*h) 2 or = ½(NAa/ah) 2. 

Y 
1+3' 

(I + 2y) I/2 
y (%) 

0.03 0.05 0.2 0.5 l 3 l0 
1.03 1 .05  1.20 1.50 2.0 4 i l 
1.03 1 .05  1 .18  1.41 1.73 2.7 4.6 
0 0 1.4 6 15 51 140 
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