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Abstract

A revision of the mathematical concept of paracrystals
is proposed. Hermann’s |Z. Electrochem. (1940), 46,
425-436| early theory of mesophases represents a
special case of a paracrystal where the statistical
parameters introduced were merely crystalline or
gas-like. The theory of paracrystals removes the
black-white picture of crystalline and amorphous
phases by introducing 18 new statistical parameters
into conventional crystallography. It is shown that a
real paracrystal can be defined by a three-dimensional
convolution polynomial in combination with an em-
pirically derived n* law. Hence, a missing corner-stone
of colloid science is established.

I. Introduction

The theory of paracrystals was published for the first
time by Hosemann (1949, 1950). Convolution oper-
ations, initially introduced by Ewald (1940) to define
bounded crystals, were applied to describe quanti-
tatively autocorrelation functions. These functions are
known for liquids as pair-correlation functions or as
Debye’s a priori distance statistics (Debye, 1927) and
are always spherically symmetric. In the case of ideal
crystals autocorrelation functions are known as Patter-
son functions (Patterson, 1935). All these functions are
convolution squares Q(x) of a density distribution p(x):

2
O(x) = p(x) = p() p(X) = | p(y) ply + W . (1)

This different nomenclature for the same operation is a
typical feature of the schizoidal character of actual
structure theories. M. von Laue (1960) pointed out in
the preface of his famous book Rontgenstrahl-Inter-
Sferenzen that a new branch of science is in progress
which closes the gap between crystallography and
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theories of the liquid state.* On page 65 one finds
another relevant statement.t

During the last 27 years the statements of von Laue
have been, indeed, confirmed step-wise through a
systematic experimental and theoretical research in the
laboratories founded by him in 1952 at the Kaiser-
Wilhelm-Institut fir Physikalische Chemie in Berlin-
Dahlem where he was Director. In the present paper we
wish to show that there really exists a continuous
transition from the short-range order of liquids up to
the long-range order characteristic of conventional
crystals. The gap is covered by the paracrystals. A
large number of papers have been accumulating
evidence in favour of them. Here we wish to recapitul-
ate the essential points of this research work. Finally,
we will comment on certain criticisms of the theory.
According to von Laue a new branch of science is
opening up.

II. The ideal paracrystal

The use of one-dimensional convolution polynomials
has been known since the work of Landau (1937) and
Ornstein & Zernike (1914). In the present study,
however, we are concerned with a three-dimensional
problem. Three vectors a, (k = 1, 2, 3) span the unit
cell of a paracrystalline lattice. In the special case of a
primitive orthogonal lattice the three so-called co-
ordination statistics H,(x) define the frequencies for

* ‘Seit dem Erscheinen der 2. Auflage (1949) ist die Forschung
iiber die Struktur der Kristalle und auch anderer Korper stiirmisch
fortgeschritten: es ist sogar, man konnte fast sagen. eine neue
Wissenschaft entstanden iiber die Kristallbaufehler und ihre Folgen.
Aber die Grundlagen der Theorie der Rontgeninterferenzen sind
dadurch nicht berihrt worden. Immerhin sind in § 10 R.
Hosemann’s Ergebnisse iiber den Bau der Parakristalle wenigstens
in einfachster Form hinzugekommen.'

+ *Aber nicht nur bei Flissigkeiten spielt die Nahordnung die fiir
die Interferenzen entscheidende Rolle, es gibt vielmehr einen stetigen
Ubergang von ihr bis hin zur kristallinen Fernordnung. Solche
Zwischenkorper bezeichnet man als ‘Parakristalle’.”

¢ 1981 International Union of Crystallography
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values a, = x in the autocorrelation function. Their first
three moments are defined by

TH(x)dx*=1; [xH,(x)dx®=a;

(1/a}) [ (x — &y, a)? H,(x) dx* = 4};

g = duila;. (2)
Nine new variances g%, define here the fluctuation
tensors g,; of the statistics H,(x) and can have special
orientations defined by nine Euler angles. In the theory
of ideal paracrystals it is proposed, for convenience,
that the vectors a; and a,, touching each other within a
given unit cell, do fluctuate without having any
statistical correlation.

The probability for pairs such as a; and a, is given by
H,(x) H (x). If one wishes to find the probability
distribution for the vectors a, + a, = y one has to
integrate over all vectors a, with fixed values y, finding
as a result:

N\

H(y)=[H,x) H(y —x)dx*=H;H,. 3)
H(x) represents the probability for the position of the
atom (1,0) and H,(y) for the atom (0,1) (Fig. 6). If we
further use both vectors x and y to define the position
of the lattice point (1, 1) then evidently there will be no
correlations between x and y. The opposite sides of this
lattice cell are, nevertheless, identical. The whole ideal
paracrystal consists therefore of a network of parallele-
pipeds (see Fig. 1). The convolution polynomial

z(x) =3 H,,(x)

par

with
D timesﬁ g times r times
H,,(x)=P(x—0)H,H,..HHH, . HHH,.. H,

4)

represents the autocorrelation function of an un-
bounded paracrystal. The Fourier transform (symbol
#) of z(x) is the paracrystalline lattice factor Z(b).
This factor can be easily calculated using the con-
volution theorem of the # transform which states that

N
F H H,=F FifFi(b)=.7 (H);
Fi(b)=.#(H)) (5)

where the vector b expands in reciprocal space. Thus,

3
Zb)=.7@)=1] K, K,=Re
k=1

Each K, factor has the maxima (1 + |F, 1)/(1 — {F, ) if
(a,b) = h, @)

which are the well known ‘Laue conditions’. Contrary
to the case of crystals, minima with the value
(1 —1F,D/(1 + IF,]) different from zero, also exist if

(a,b)=h, + 4. )

The integral width b, of the maxima parallel to the
direction of a, is given by

0b, = (1/2a,)(1 — |F, ) ~ (1/a,)(ng 1) 9)

(see Appendix I). In the case of crystals b, is zero
because F, is a Fourier transform of the point function
H,(x) and hence | F,! = 1. According to Ewald (1940)
a bounded paracrystal can be obtained if one multi-
plies the density distribution function p(x) by a shape
function s(x) which is equal to unity inside the lattice
and zero outside it. Thenzz(x) should be multiplied with

(h, integer),

the convolution square §(x) of s(x), which is, accord-
ing to (1), defined by §(x) 3(—x). Its Fourier transform
S2(b) is the shape factor of Ewald. For the intensity
function I(b) one finally obtains

Ib)= (1/0) Z1 S2. f3 (10)

where v is the volume a,a, a, of a lattice cell, and /7 is
the structure factor.

Fig. 2 offers an example of a paracrystalline
two-dimensional structure. Here the small coins are
packed two-dimensionally in an atttempt to build up a
cubic primitive lattice. However, 10% of larger coins
which are distributed over the lattice statistically
disturb the cubic arrangement. This is the essential
assumption for the occurrence of a paracrystalline
lattice: point defects, which produce local microstrains
overlapping with each other, are irregularly distributed

Fig. . A two-dimensional computer-simulated ideal paracrystal.
The horizontal lines and the vertical netplanes are identical. The
ideal paracrystal can grow unlimitedly.
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Melts and pyrolytic graphite with ¢ ~ 4% and more
have g values near the gaseous state g > 30% (Steffen,
1976: Steffen & Hosemann, 1976a,b).

The physical meaning of (14) is shown in Fig. 5. The
right part of an autocorrelation function of a two-
dimensional paracrystal shows that the fluctuation 4,
of point distances between the first and (N_+ Dth
netplane increases proportionally with /N. If 4,
reaches the limiting value a* d (d = mean netplane
distance) then the curvature of this boundary netplane
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Fig. 4. The experimentally observed \ﬂ\’ values of natural micro-
paracrystals as a function of the reciprocal paracrystalline g
values (equation 2).
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Fig. 5. The physical meaning of the a* law (equation 14). For
details see text.

becomes so large that the valence angles between the
atoms within this netplane cannot withstand the
stresses any longer and break their bindings.

Equation (14) is of fundamental importance for the
whole field of colloid science and tells us that large inner
surfaces can be stabilized if they are produced by the
existence of microparacrystals. A computer simulated
experiment illustrates this point (Janke & Hosemann,
1978). The ‘a priori distance statistics’ (Debye,
1927) of two vectors a, (horizontal) and a,
(vertical) are given independently from each other
by a Monte-Carlo method. The angles of their
directions between the horizontal and vertical lines
respectively may be of the order of a*. We start at
the origin (0,0) (see Fig. 6): The computer selects a
value a, and. hence, the position of the atom at (1,0). A
value a, in the vertical direction is subsequently
generated, reaching the position (1,1). Now the com-
puter supplies two new values a, and a, which by
means of a circle construction — drawing the vectors a,
around the point (0,0) and —a, around (1,1) — leads to
the position of (0,1). In a similar manner one passes
through (1,1) over the (1,1) and so on. The computer
draws progressively, in this way, a spiral of lattice
points around the origin until the distance fluctuations
between lattice points become so large that the two
circles cannot intersect with each other anymore. Fig. 7
shows the paracrystalline lattice drawn by the com-
puter and the arrow indicates where the paracrystal
construction is stopped. Fig. 8 illustrates the Fraun-
hofer diffraction pattern of the model and Fig. 9 shows
the corresponding db—h? plot which yields the values
N =43 + 4and g = 2-1 + 0-2%. These data agree
within the errors of the experiment with the values N =
45 and g = 2% introduced into the model. This experi-
ment demonstrates that (9) to (14), derived for the ideal
paracrystal. are also applicable for real paracrystals
having non-parallelepipedic-shaped lattice cells. More-

Fig. 6. The circle construction of the spiral paracrystal. See text for
details.
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all netplanes fluctuate as rigid entities, occur (Fig. 1).
This effect can be eliminated numerically in the analysis
of small-angle scattering (Weick & Hosemann, 1980).

The considerations exposed in § III suggest that
there is no reason whatsoever to take literally the
model of the ideal paracrystal. Equations (9) to (12)
can also be, in fact, applied to wide-angle scattering of
the real paracrystal where such rigid entities no longer
exist (See Fig. 9).

In another case Ruland (1979) argues that 6b—h?
plots can also be obtained from polycrystalline
material, if it is under stress. Until now only a linear
relationship between b and 4 has been discussed in
solid-state physics. Vogel (1967) for instance found it
in cold-deformed pure a-Fe (see Fig. 10). Since shape
factor and lattice function have Lorentzian-like pro-
files, the linear relation (12) can be used and one finds

ob = (1/aN) |1 + N(da/a) h|. (16)
T
o 17 A
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Fig. 10. Integral widths db of the reflection of cold-deformed pure
«a-Fe,
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Fig. 11. Fourier analysis of reflection profiles 110 and 220 of
melt-crystallized linear polyethylene. Paracrystalline distor-
tion g,,o = 1:6%. The number ndb gives the domain (n/2) éb <
|16 — h/al within which the Fourier transform of the reflection A
was carried out. ——— Calculated from Gaussian-type profiles of
microstrained crystals.

da is the standard deviation of the lattice constants a of
single crystallites. Nda/a has, for instance, the value
1-2 in the example of Fig. 10.

How can Jb—h? diagrams be produced by micro-
strains? We found two conditions which simul-
taneously must be realized:

(1) S? and the lattice function are ‘Gaussian’-like;

(2) Nda/a < 0-3.

Instead of (16) one then obtains

ob = (1/aN){1 + [N(da/a)h]*}?
~ (1/aN) {1 + 4[N(da/a) h*}. (17)

The similarity with (13) is obvious. }(Nda/ah)? is
replaced by (na*h)? = y. The approximation on the
second line of (17) works within y ~ 6% for y < 0-5
(Appendix III). At least three orders of reflections must
be observable, if crystallites with the quadratic approach
of (17) can be identified. Therefore Nda/a must be
smaller than 0-5 or a®* < 0-1. Glocker (1958) discussed
that iron, contrary to Fig. 10, can have Nda/a values
down to 0-28 if cold worked and quickly annealed
above the recovery temperature. Interpreted as para-
crystalline, such material would not belong to all the
paracrystals investigated until now, because its a* value
and line profiles are of a different type.

For completeness it may be mentioned that Vogel,
Haase & Hosemann (1974) have generalized the
Fourier method of Warren & Averbach (1950). With
the help of the Fourier transforms 4,,, and 4,,, of two
reflections one can differentiate easily between micro-
stresses and paracrystalline distortions. An example is
given in Fig. 11.

In our next paper it will be shown that the analysis of
melts and polymers carried out with the help of the
paracrystal theory leads to novel results with regard to
thermal fluctuations and isothermal compressibility.

APPENDIX 1

The three-dimensional function F,(b) is given in the
Guinier approximation by
F,(b) = | F,(b)l exp (—27niba,)
with
[F (b)l ~exp (—2n% g, h2). (ALD
The K, (b) function of (6) consists of a background

(1 — IFH/(1 + IFl). The maxima at the position of
the Laue condition in (7) have, hence, a value

1+1F,) 1—IF, 41F,)
_ — . (AL2)
I—IFl  1+I1F] 1—IF,?
The integral value of a reflection is given by
I —1F,l 21F,|
(a1 ————| = (1/a) —F~—. (AL3
, 1+ 1F, ( “)1+|ka (41-3)
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The quotient of (A41.3) and (A41.2) is defined as integral
width
b = (a, )1 — |F )~ (1/a)(ng. h)>

if one introduces the approximation in (4 1.1).

APPENDIX II

The relative change of the mean length 2. a, of the ideal
paracrystal is given by the statistical correlation

d = cos (B; + ) — cos B
= cos f (cos ¢ — 1) —sin Bsin 9. (AIL1)
Since 1! < a* it follows from (14) that

a
Cos 9 = (2/a*) [ (1 —}p*) pdp =1 — ja*?
0
o

sin @ = (2/a%?) | (9 —1¢*) pdo
0

(AIL2)
and (15) follows.

APPENDIX III

The paraboloid character of the root in (17) can be
defined by y and is a quantitative measure of reliability
of its tentative db—h? approximation (see Table 1).

Table 1. The paraboloid character of the root of
equation (17)
y=1[(1 + p)/(1 + 2y)"2 — 1] x 100.
¥ = (ma*h)? or = $(Nda/ah)™

¥ 0-03 005 02 05 1 3 10
14y 1.03 1.05 1.20 1.50 2.0 4 1
(1+2)Y2 1.03 105 1-18 1.41 1.73 2.7 46
y©%) 0 0 14 6 15 51 140
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